线性代数之矩阵的特征值与特征向量(公式法)

线性代数里面有一类题,是要求矩阵的特征值与特征向量。

其中最典型的方法就是公式法:即由|λΕ-Α|=0,求出A的特征值。

比如:

图片发自简书App

又如:

图片发自简书App

下面详细聊一下公式法的具体实现步骤:

1、写出|λΕ-Α|式子的具体形式 ->进行行列式化简,写成因式的形式 ->令式子等于0 ->得到特征值。

2、将特征值代入(λΕ-Α)X=0,写出X前面的矩阵。

3、对矩阵进行归一性、排他性检验

4、找到“台阶”上的作为受约束向量、剩下的即为自由向量。

5、写出该特征值对应的特征向量。

图片发自简书App by GoodNotes

几个需要深入思考的问题:1、代入特征值步骤的含义。2、步骤3中矩阵的化简的方法。

图片发自简书App

如何在Mac上轻松安装Photoshop Mac怎么安装PS软件教程:详细指南
2017年4月更新 DNF全职业47个游戏内玩家人数排行